跳转到内容

格利泽514

天球赤道座标星图 13h 29m 59.7859s, +10° 22′ 37.7845″
维基百科,自由的百科全书
Gliese 514
观测资料
历元 J2000
星座 处女座
星官
赤经 13h 29m 59.7859s[1]
赤纬 10° 22′ 37.7845″[1]
视星等(V) 9.029
特性
演化阶段主序星
光谱分类M0Ve[2]
视星等 (J)5.902+0.018
[3]
视星等 (H)5.300+0.033
[3]
天体测定
径向速度 (Rv)14.606[4] km/s
自行 (μ) 赤经:1,127.34+0.03
[5] mas/yr
赤纬:−1,073.888+0.013
[5] mas/yr
视差 (π)131.1013 ± 0.0270[5] mas
距离24.878 ± 0.005 ly
(7.628 ± 0.002 pc)
绝对星等 (MV)5.89[6]
详细资料
质量0.526[7] M
半径0.611+0.043
[7] R
表面重力 (log g)4.59[7]
亮度 (bolometric)0.043[7] L
温度2,901[6] - 3,727[3] K
金属量 [Fe/H]−0.07±0.07[3] dex
自转28.0+2.9
[8]
自转速度 (v sin i)2.00[9] km/s
年龄8.25[10] Gyr
其他命名
BD+11 2576、​HIP 65859、​LTT 13925、​Ross 490、​TYC 895-317-1、​2MASS J13295979+1022376, Gaia EDR3 3738099879558957952[1]
参考数据库
SIMBAD资料

格利泽514,又称BD+11 2576或HIP 65859, 是一颗位于处女座的红矮星,距离太阳约24.87光年。[11]

格利泽514的金属量Fe/H指数在很大程度上是未知的,数据的中值为-0.4至+0.18。这种差异是由于Gliese 514的恒星光谱的特殊性造成的。光谱的特殊性也会影响恒星温度测量的准确性,[9] 数值可低至2901 K。[6]格利泽514的光谱显示出发射线[2],但恒星本身的星斑活动很低。[12]

截至2020年,并没有发现任何恒星伴星。[13]

目前计算太阳正穿过格利泽 514的奥尔特云尾部。因此,未来穿越太阳系的星际天体可能源自格利泽 514。[14]

行星系统

[编辑]

自2019年以来,人们怀疑在格利泽 514周围存在一个以轨道周期为15天运行的行星。[15] 但是,该行星尚未得到证实。相反,在2022年,一颗名为格利泽 514 b的超级地球行星通过视向速度法在偏心140天的轨道上被发现。行星轨道部分位于母星宜居带内,行星平衡温度沿轨道平均为202 K。[8]

恒星的红外过量也表明系统中可能存在岩屑盘[16]

Gliese 514的行星系[8]
成员
(依恒星距离)
质量 半长轴
(AU)
轨道周期
()
离心率 倾角 半径
b >5.2+0.9
 M
0.422+0.014
−0.015
140.43+0.41
0.45+0.15
−0.14

参考

[编辑]
  1. ^ 1.0 1.1 1.2 BD+11 2576. SIMBAD. 斯特拉斯堡天文资料中心. 
  2. ^ 2.0 2.1 Lindegren, Lennart; Dravins, Dainis, Astrometric radial velocities for nearby stars, Astronomy & Astrophysics, 2021, 652: A45, Bibcode:2021A&A...652A..45L, S2CID 234778154, arXiv:2105.09014可免费查阅, doi:10.1051/0004-6361/202141344 
  3. ^ 3.0 3.1 3.2 3.3 Lindgren, Sara; Heiter, Ulrike, Metallicity determination of M dwarfs, Astronomy & Astrophysics, 2017, 604: A97, Bibcode:2017A&A...604A..97L, S2CID 119216828, arXiv:1705.08785可免费查阅, doi:10.1051/0004-6361/201730715 
  4. ^ Manara, C. F.; et al, PENELLOPE: The ESO data legacy program to complement the Hubble UV Legacy Library of Young Stars (ULLYSES), Astronomy & Astrophysics, 2021, 650: A196, S2CID 232320330, arXiv:2103.12446可免费查阅, doi:10.1051/0004-6361/202140639 
  5. ^ 5.0 5.1 5.2 Brown, A. G. A.; et al. Gaia Early Data Release 3: Summary of the contents and survey properties. Astronomy & Astrophysics. 2021, 649: A1. Bibcode:2021A&A...649A...1G. S2CID 227254300. arXiv:2012.01533可免费查阅. doi:10.1051/0004-6361/202039657可免费查阅.  已忽略未知参数|collaboration= (帮助) (勘误: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  6. ^ 6.0 6.1 6.2 Ghosh, Samrat; Ghosh, Supriyo; Das, Ramkrishna; Mondal, Soumen; Khata, Dhrimadri, Understanding the physical properties of young M dwarfs: NIR spectroscopic studies, Monthly Notices of the Royal Astronomical Society, 2020, 493 (3): 4533–4550, arXiv:2002.05762可免费查阅, doi:10.1093/mnras/staa427 
  7. ^ 7.0 7.1 7.2 7.3 Berger, D. H.; Gies, D. R.; McAlister, H. A.; Brummelaar, T. A. ten; Henry, T. J.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Ridgway, S. T.; Aufdenberg, J. P.; Merand, A., First Results from the CHARA Array. IV. The Interferometric Radii of Low‐Mass Stars, The Astrophysical Journal, 2006, 644 (1): 475–483, Bibcode:2006ApJ...644..475B, S2CID 14966363, arXiv:astro-ph/0602105可免费查阅, doi:10.1086/503318 
  8. ^ 8.0 8.1 8.2 Damasso, M.; et al, A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514, Astronomy & Astrophysics, 2022, 666: A187, S2CID 248157318, arXiv:2204.06376可免费查阅, doi:10.1051/0004-6361/202243522 
  9. ^ 9.0 9.1 Olander, T.; Heiter, U.; Kochukhov, O., Comparative high-resolution spectroscopy of M dwarfs: Exploring non-LTE effects, Astronomy & Astrophysics, 2021, 649: A103, Bibcode:2021A&A...649A.103O, S2CID 231942628, arXiv:2102.08836可免费查阅, doi:10.1051/0004-6361/202039747 
  10. ^ Maldonado, J.; Micela, G.; Baratella, M.; d'Orazi, V.; Affer, L.; Biazzo, K.; Lanza, A. F.; Maggio, A.; González Hernández, J. I.; Perger, M.; Pinamonti, M.; Scandariato, G.; Sozzetti, A.; Locci, D.; Di Maio, C.; Bignamini, A.; Claudi, R.; Molinari, E.; Rebolo, R.; Ribas, I.; Toledo-Padrón, B.; Covino, E.; Desidera, S.; Herrero, E.; Morales, J. C.; Suárez-Mascareño, A.; Pagano, I.; Petralia, A.; Piotto, G.; Poretti, E. HADES RV programme with HARPS-N at TNG. XII. The abundance signature of M dwarf stars with planets. Astronomy and Astrophysics. 2020, 644: A68. Bibcode:2020A&A...644A..68M. S2CID 225094682. arXiv:2010.14867可免费查阅. doi:10.1051/0004-6361/202039478. 
  11. ^ Determinations of the parallaxes of BD +11 2576 and BD +18 683. [2023-03-24]. (原始内容存档于2023-03-07). 
  12. ^ Reiners, A., The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation, Astronomy and Astrophysics, 2007, 467 (1): 259, Bibcode:2007A&A...467..259R, S2CID 8672566, arXiv:astro-ph/0702634可免费查阅, doi:10.1051/0004-6361:20066991 
  13. ^ Lamman, Claire; Baranec, Christoph; Berta-Thompson, Zachory K.; Law, Nicholas M.; Schonhut-Stasik, Jessica; Ziegler, Carl; Salama, Maïssa; Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Kulkarni, Shrinivas R.; Winters, Jennifer G.; Irwin, Jonathan M., Robo-AO M-dwarf Multiplicity Survey: Catalog, The Astronomical Journal, 2020, 159 (4): 139, Bibcode:2020AJ....159..139L, S2CID 210718832, arXiv:2001.05988可免费查阅, doi:10.3847/1538-3881/ab6ef1 
  14. ^ Portegies Zwart, S., Oort cloud Ecology, Astronomy & Astrophysics, 2021, 647: A136, S2CID 226976082, arXiv:2011.08257可免费查阅, doi:10.1051/0004-6361/202038888 
  15. ^ Barnes, J. R.; et al. Frequency of planets orbiting M dwarfs in the Solar neighbourhood. 2019-06-11. arXiv:1906.04644可免费查阅 [astro-ph.EP] (英语). 
  16. ^ Tanner, Angelle; Plavchan, Peter; Bryden, Geoff; Kennedy, Grant; Matrá, Luca; Cronin-Coltsmann, Patrick; Lowrance, Patrick; Henry, Todd; Riaz, Basmah; Gizis, John E.; Riedel, Adric; Choquet, Elodie, Herschel Observations of Disks around Late-type Stars, Publications of the Astronomical Society of the Pacific, 2020, 132 (1014): 084401, Bibcode:2020PASP..132h4401T, S2CID 216553868, arXiv:2004.12597可免费查阅, doi:10.1088/1538-3873/ab895f